

Plant Archives

Journal homepage: http://www.plantarchives.org
DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.085

EFFECT OF EMS (ETHYL METHANE SULPHONATE) ON SEED GERMINATION, OVULE FERTILITY AND POLLEN FERTILITY IN DIFFERENT VARIETIES OF *LINUM USITATISSIMUM L*.

Prikshit Gupta¹, Ritika Singh^{1*}, Ravi Sharma², Heem Barilly³, Anupam Kumar³, Shivani Kaundal³ and Komal Sharma³

¹Department of Genetics and Plant Breeding, School of Agriculture, Abhilashi University, Chailchowk, Mandi - 175 045, H.P., India.
²Department of Plant Pathology, School of Agriculture, Abhilashi University Chailchowk, Mandi - 175 045, H.P., India.
³Department of Biotechnology, School of Agriculture, Abhilashi University Chailchowk, Mandi - 175 045, H.P., India.
*Corresponding author E-mail: ritika.singh139@gmail.com.

(Date of Receiving-10-06-2025; Date of Acceptance-25-08-2025)

ABSTRACT

In present investigation, effect of four different concentrations of EMS *i.e*, 0.2%, 0.4%, 0.6% and 0.8 % EMS concentration were studied on four different varieties of linseed *i.e*, Himalsi-1, Surbhi, Jeevan and Janki. Four different treatments of EMS i.e, 0.2, 0.4.0.6 and 0.8% were given to the presoaked seeds. Seed germination was found to be decreased with increase in dose of mutagen. 0.2 % EMS showed increase germination percentage in all the 4 varieties of linseed. In seed germination there was an increased reduction when increasing dose of chemical mutagen. While in ovule fertility, all the treatments showed decrease in percentage of ovule fertility and reduction showed an increase in all the treatments with increasing dose of mutagen. In pollen fertility, there was also decrease in the percentage of pollen fertility. The maximum per cent pollen fertility was found at 0.2% EMS concentration in all the 4 varieties of linseed. While, there was an increased reduction in all the 4 varieties of linseed when increasing dose of mutagen. The highest reduction was observed in 0.8% EMS concentration in all 4 varieties of linseed. The treatment was found effective for lower concentrations.

Key words: Linum usitatissimum. var. Himalsi-1, Surbhi, Jeevan and Janki, Chemical mutagen, Ethyl methane sulphonate, Seed germination, Ovule and Pollen fertility.

Introduction

Linseed (*Linum usitatissimum* L., 2n=30) is an important oilseed and fibre crop belonging to family *Linaceae*. Linseed is unique among oilseeds as its oil is one of the richest vegetarian sources of linolenic (omega-3) and linoleic (omega-6) polyunsaturated fatty acid (PUFA) which offer potential health benefits since they are not synthesized in the organism and must be ingested through food. Its seeds contain about 33 to 45% of oil, which is used in human and animal diets and for various industrial uses. Linseed oil helps in decreasing cholesterol level (Singh and Marker, 2006), preventing cancer especially breast, prostate and other hormone sensitive cancers when included in the diet chain. Linseed occupies

an area of 32.23 lakh ha yielding 30.68 lakh tonnes with an average productivity of 952 kg/ha in the world, whereas in India, it occupies an area of 1.7 lakh ha with a production and productivity of about 1 lakh tonnes and 574 kg/ha, respectively. Linseed production volume in India is estimated to produce nearly 113 thousand metric tons of linseed. (FAO, 2024). For the genetic improvement of linseed, conventional breeding methods have been the basic tools for releasing new cultivars with durable resistance to diseases, agronomic fitness and greater yield stability (Green *et al.*, 2008). However, the narrow genetic base used for the development of linseed cultivars (Fu *et al.*, 2002; Cloutier *et al.*, 2009), the scarce availability of related species to incorporate new variation, the lack of hybrid production systems (Green *et al.*, 2008) and the

limited genomic tools for molecular breeding (Cloutier et al., 2011). Development of high yielding varieties requires the knowledge of existing genetic variability, but due to selective breeding over the generation in linseed, conventional breeding has limited scope. Thus, mutation breeding is an alternative effective tool for creation of variability. The physical and chemical mutagen has been employed successfully in genetic improvement of many crops i.e. linseed (Green, 1986; Green and Marshall, 1984; Deka, 2016; Jahan et al., 2019), Sesame (Kumari et al., 2016), Mustard (Julia et al., 2018), Cowpea (Gririja and Dhanavel, 2013; Bind et al., 2016), peas (Dhulgande et al., 2011). This mutagen provides a powerful tool for creation of variation in crop plant for both qualitative and quantitative traits (Das and Misra, 2005; Baisakh et al., 2011). EMS is the most commonly used mutagen which are known to influence the plant growth and development by inducing cytological, genetical, biochemical and morphological changes in plants (Gunkel and Sparrow, 1961; Das and Prusti, 2020). However, after continuous work done over the generation, it was observed that only a few mutagenic treatments have been effective for inducing high frequency of mutation. A highly effective mutagen may not necessarily show high efficiency and vice versa. Therefore, selection of effective and efficient mutagen is very essential to recover high frequency of desirable mutations in any mutation breeding studies (Usharani and Kumar, 2015). Hence, the study was undertaken to assess the effect of different doses of EMS on seed germination, pollen fertility and ovule fertility.

Materials and Methods

Genetically pure seeds of *Linum usitatissimum* L. var. Himlasi-1, Surbhi, Jeevan and Janki were treated with chemical mutagen *i.e*, EMS (Ethyl methane sulphonate). Seeds were treated with EMS concentrations of 0.2,0.4,0.6 and 0.8% (v/v) periods for 18 Hrs. All the treatments were carried out at 25+0.5. After mutagen treatment seeds were rinsed for 30 min with running tap water to remove the mutagen and post soaked for 1Hr. in distilled water and then seeds were kept in seed germinator.

Seed germination percentage

100 seeds of each dose along with control were kept in petri-dishes on blotting paper. The emergence of radical was recorded as indication for germination of seeds. Seeds were considered germinated when the radicle was at least 4mm long. Germination percentage was calculated after three and seven days, by counting the germinated seeds and total number of seeds sown. Further percent over control and reduction over control was also

calculated.

 $Seed \ Germination \ percentage = \frac{Number \ of \ seeds \ germination}{Total \ number \ of \ seeds} \times 100$

Ovule fertility

As expressed in percentage of control, ovule fertility was measured in terms of seed setting per capsule. Marked variations in number of seeds per capsules were observed in treatment of EMS. With increase in dose of EMS, decrease in ovule fertility was observed in Him Alsi-1, Surbhi, Jeevan and Janki.

Pollen fertility

100 seeds were sown in field for each treatment at experimental field of School of Agriculture, Abhilashi University, Chailchowk. After first flower opening from main branch, buds form 3rd to 9th were used for pollen fertility study. At initial stage of flowering, flower buds were collected from 20 plants at random. Anthers of each flower were tested with the help of needle on the slide, stained with 1% Aceto-carmine stain and observed under compound microscope.

Pollen fertility =
$$\frac{\text{Number of viable pollens}}{\text{Total number of pollens}} \times 100$$

Results

Results of present investigation indicated that 18 Hrs treatment significantly influenced seed germination, ovule fertility and pollen fertility have been tabulated in Tables 1 and 2, respectively (Plate 1).

Seed germination

A decrease in seed germination was observed with increase in mutagen dose. The percent germination and survival was recorded on 3rd and 7th DAT respectively and the results indicated that the germination and survival decreased with increase in the concentration of the mutagen i.e EMS (Thakur and Paul, 2020). The results indicated that the average percentage germination and survival were reduced with increasing concentration of mutagen (EMS) in lab condition (Kumar and Paul, 2021). Seed germination is the initial stage of a plant's life. It is a three-phase process. The first phase is imbibition. Dormant seeds take up water, and the hydrolysis process takes place. Seed imbibition results from the interaction of proteins, carbohydrates, lipids and variations in their contents can affect the process. Protein and oil bodies are the primary reserves in oilseed crops that provide energy, carbon and nitrogen to seedlings during their establishment (A.S. et al., 2017). The second phase is the regulation of germination, characterized by the

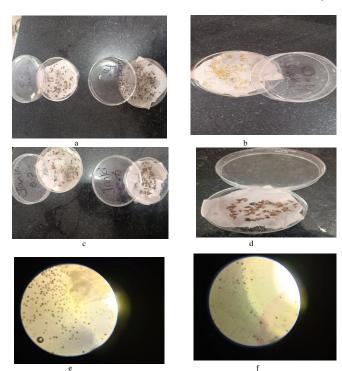


Plate 1: Micrograph showing chemical mutagen treatment, seed germination and pollen fertility.

activation of ATP synthesis in glycolysis, the Krebs cycle, respiratory chain, and the translation of stored mRNA. However, the third phase represents the completion of germination, when the radicle protrudes from the seed coat and forms a root, and the plumules form a shoot system capable of utilizing inorganic matter, water and light energy for healthy growth (Nonogaki et al., 2010). Germination is a complicated process from a physiological standpoint, involving multiple signals and it is influenced by both intrinsic and extrinsic factors (Miransari and Smith, 2014). Intrinsic factors include seed dormancy and available food stores, and extrinsic factors include water, temperature, oxygen, light and relative humidity. The visible sign that germination is complete is usually the penetration of the structures surrounding the embryo by the radicle, the result is often called visible germination. The results indicated that the average percentage germination and survival were reduced with increasing concentration of mutagen (EMS) in lab condition (Kumar and Paul, 2021). Several workers reported decrease in seed germination with increasing concentrations such as Sharma et al. (2013) in citrus Jambhiri seeds and epicotyl, Dhulgande et al. (2015) in pea, Sandhiya et al. (2020) in white seeded sesame, Omuson et al. (2021) in two okra varieties, Kumar et al. (2023) in Mungbean, Sowmya et al. (2023) in field bean, Dhange et al. (2024) in stevia, Meng et al. (2024) in

marigold seeds, Modi *et al.* (2024) in *Brassica campestris* stated that the decrease in seed germination was mainly due to the interference of mutagens with metabolic activities of the seeds. Disturbance in the formation of enzymes involved in the germination process may be one of the physiological effects caused by mutagenic treatment particularly chemical mutagen like EMS leading to decrease in germination (Kulkarni, 2011).

Ovule fertility

As expressed in percentage of control, ovule fertility was measured in terms of seed setting per capsule Marked variations in number of seeds per capsules were observed in treatment with EMS. With increase in EMS, decrease in ovule fertility was observed in Him Alsi-1, Surbhi, Jeevan and Janki. Data pertaining to percent reduction over control in pollen and ovule fertility showed that there was inverse relation with the dose of EMS with the ovule fertility which proves that with increase in concentration of mutagens, the ovule fertility got reduced drastically. Also it was observed that different

Table 1: Effect of different doses of EMS on seed germination and plant survival percentage (Lab condition).

Treatments	Seed germination (%)	Percent reduction over control	Plant Survival	Percent reduction over control			
Himalsi-1							
0.2	79	20.20	91.75	6.37			
0.4	61	38.38	87.50	10.71			
0.6	49	50.50	79	19.38			
0.8	30	69.69	63	35.71			
Control	99		98				
Surbhi							
0.2	80	18.36	67.52	29.66			
0.4	71	27.55	65.83	31.42			
0.6	11	88.77	10	89.58			
0.8	5	94.89	2	97.91			
Control	98		96				
Jeevan							
0.2	87	8.42	86.66	8.77			
0.4	71	25.26	84.16	11.41			
0.6	67	29.47	80	15.78			
0.8	49	48.42	75.83	20.17			
Control	95		95				
Janki							
0.2	86	10.41	91.66	0.36			
0.4	82	14.58	88.33	3.98			
0.6	71	26.04	85	7.60			
0.8	50	47.91	74.16	19.39			
Control	96		92				

Table 2: Effect of different doses of EMS on pollen and ov	vule
fertility.	

Treatments	% Pollen fertility	% Reduction	% Ovule fertility	% Reduction			
Himalsi-1							
0.2	91.30	8.7	90.71	9.29			
0.4	88.69	11.31	89.28	10.72			
0.6	86.08	13.92	87.85	12.15			
0.8	79.13	20.87	84.28	15.72			
Control	100		100				
Surbhi							
0.2	5.26-6.60	10.91	77.60	2.16			
0.4	3.56-5.55	25.43	58.60	26.56			
Control	97		79.80				
Jeevan							
0.2	82.60	13.64	81.42	16.18			
0.4	80.86	15.46	78.57	19.11			
0.6	75.65	20.90	76.42	21.33			
0.8	72.17	24.54	74.28	23.53			
Control	95.65		97.14				
Janki							
0.2	87.21	11.73	86.42	10.37			
0.4	83.47	15.51	84.28	12.59			
0.6	76.52	22.55	82.85	14.07			
0.8	74.56	24.53	79.28	17.77			
Control	98.80		96.42				

concentrations have their own biological effects, and effect varies with genotypes based upon the physiological and genetic properties of seeds of cultivars.

Pollen fertility

In case of pollen fertility, 18 Hrs treatment showed reduction in pollen fertility with an increase in mutagen doses. The pollen fertility was seen maximum in 0.2% EMS concentration in all the varieties of linseed and the percentage reduction was seen maximum in 0.8% EMS concentration. The increasing pollen sterility has been mainly attributed to chromosomal interchange, chromosomal aberration, gene mutation (Gautam et al., 1992), cytoplasmic factors (Malinoveskii et al., 1973). The negative effect of mutagens on pollen fertility percentage in mutagenic treatment plants may be due to meiotic aberrations that were induced by mutagens leading to the formation of aberrant pollen grains (Rani and Kumar, 2016). Effect of mutagens on pollen fertility in different plants were reported by different scientists-Devmani and Dwivedi (2014) in cowpea, Monica and Seetharaman (2015) in garden bean, Thakur and Paul (2020) in linseed, Akilan et al. (2019) in rice, Gawande et al. (2022) in safflower, Shukla (2017) in mustard, Sinha (2017) in Indian squill, Kumar and Paul (2021), Malik et al. (2021) in ajwain, Kumar et al. (2022), Kumar et al. (2023) in mungbean, Hasan et al. (2025) in Capsicum annum L. var. NS1101. Increase in pollen sterility in mutant plants may be interpreted as that the mutagenic efficiencies that have been observed in the form of reduced or increased germination and growth parameters has been carried over through subsequent cell divisions from seed germination up to the flowering of plant. It affects normal pollen development from pollen mother cells and ultimately increases pollen sterility.

Conclusion

The treatments for lower concentrations were found to be effective while higher concentrations showed inhibitory effect on seed germination, ovule fertility and pollen fertility. Drastic reduction in all parameters were found in EMS mutant. Over control. The stimulatory effect at lower dose is due to to the fact that mutagens at lower concentrations stimulate the role of enzyme and growth hormone responsible for growth and yield while the inhibitory effect is due to the fact that biological damage increased at a faster rate in higher concentrations of mutagens (Selvaraj et al., 2019). This study proves that the importance of mutation treatment in crop improvement as suggested by Malode (1995) that the ultimate source of all heritable variations to select from are mutations. Further investigation is required to determine the effects of other variables viz. cytological studies, agronomic growth parameters and biochemical parameters is in progress.

References

- Akilan, M., Anand G., Vanniarajan C., Subramanian E. and Anandhi K. (2019). Study on impect of mutgenic treatent on pollen and spikelet fertility and its relationship in rice (*Oryza sativa* L.). *Elect. J. Pant Breed.*, **10(2)**:525-534.
- Ali, A.S. and Elozeiri A.A. (2017). Advances in Seed Biology. 2017. InTech London UK Metabolic Processes During Seed Germination.
- Baisakh, B., Das T.R. and Nayak B.K. (2011). Efficacy of physical and chemical mutagenic treatments in developing desire micro-mutants of urdbean. *J. Food Leg.*, **24**, 106-109.
- Bind, D., Dwivedi V.K. and Singh S.K. (2016). Induction of chlorophyll mutations through physical and chemical mutagenesis in cow pea [Vigna unguiculata (L.) Walp]. *Int. J. Adv. Res.*, **4**, 49.
- Cloutier, S., Niu Z., Dalta R. and Duguid S. (2009). Development and analysis of EST- SSRs for flax (*Linum usitatissimum* L.). *Theoret. Appl. Gen.*, **119**, 53-63.
- Cloutier, S., Ragupathy R., Niu Z. and Duguid S. (2011). SSR-

- based linkage map of flax (*Linum usitatissimum* L.) and mapping of QTLs underlying fatty acid composition traits. *Molecular Breeding*, **28**, 437-451.
- Das, T.R. and Misra R.C. (2005). Genetic analysis of mutagen induced variability in yield traits in greengrams (*Vigna radiate*). *Environ. Ecol.*, **23(2)**, 381-384.
- Das, T.R. and Prusti A.M. (2020). Mutagenic Effectiveness and Efficiency of Gamma Rays, EMS and NG in greengram (*Vigna radiate* L. Wilczek). *Int. J. Curr. Microbiol. Appl. Sci.*, **9**, 2336-2344.
- Deka, S.K. (2016). Studies on the mutagenic effects of Ethyl methane sulphonate (EMS) and diethyl sulphate (dES) in Linseed (*Linum usitatissimum* L.). *Ph D Thesis*, p 181. Department of Botany, Gauhati University, Guwahati, Assam, India.
- Devmani, B, and Dwivedi, V.K. (2014). Effect of mutagenesis on germination, plant survival and pollen sterility in M₁ generation in cowpea (*Vigna unguiculata* L. Walp). *Indian J. Agricult. Res.*, **48(5)**, 398-401.
- Dhange, P., Mallikarjuna A.P., Kandpal K. and Ramegowda H.V. (2024). Determination of lethal dose (LD50) and mutagenic effects of ethyl methane sulphonate (EMS) on seed germination and survival of seedlings in Stevia rebaudiana Bertoni. Mysore J. Agric. Sci., 58(2), 214-220.
- Dhulgande, G.S., Ghogare D.S. and Dhale D.A. (2015). Mutagenic effect on seed germination, seedling growth and seedling survival of Pea (*Pisum sativum L.*). *Int. J. Curr. Res. Biosci. Plant Biol.*, **2(4)**, 59-64.
- Fu, Y.B., Diederichsen A., Richards K.W. and Peterson G. (2002). Genetic diversity within a range of cultivars and landraces of flax (*Linum usitatissimum* L.) as revealed by RAPDS. *Genetic Resources and Crop Evolution*, **49**, 167-174.
- Gautam, A.S., Sood K.C. and Picharria (1992). Mutagenic effectiveness and efficiency of gamma rays, EMS and their synergistic effect in black gram (*Vigna mungo L.*). *Cytologia*, **57**, 85-89.
- Gawande, S.M., Ghuge S.B., Kalpande H.V. and Wankhade M.P. (2022). Effect of mutagens on emergence, plant survival and pollen sterility in safflower (*Carthamus tinctorius* L.). *The Pharma Innov. J.*, **11**(2), 607-610.
- Girija, M. and Dhanavel D. (2013). Induced chlorophyll mutations in cowpea (*Vigna unguiculata* L. Walp). Different types of morphological mutations in linseed 168. *Int. J. Curr. Res.*, **2**, 136-140.
- Green, A.G., Chen Y., Singh S.P. and Dribnenki J.C.P. (2008). Flax. In: Compendium of Transgenic Crop Plants: Transgenic Oilseed Crops (Kole, C. and Hall T.C. eds), Blackwell Publishing Ltd., Oxford, 199-226.
- Green, A.G and Marshall D.R. (1984). Isolation of induced mutants in linseed (*Linum usitatissimum*) having reduced linolenic acid content. *Euphytica*, **33**, 321-328.
- Green, A.G. (1986). A mutant genotype of flax (*Linum usitatissimum* L.) containing very low levels of linolenic

- acid in its seed oil. Canadian J. Plant Sci., 66, 499-503.
- Gunckel, J.E. and Sparrow A.H. (1961). Ionizing radiation, biochemical, physiological and morphological aspects of their effects on plants. *Encyclopedia Plant Physiology (Ruhland W) Springer-verlag, Berlin* 16, 555-611.
- Hasan, N., Choudhary S. and Laskar R.A. (2025). A comparative study of mutagenic efficacy of EMS and MMS in inducing quantitative and cytological variations in *Capsicum annum* L. var. NS1101. *Discover Plants*, **2**, 184.
- Jahan, R, Amin R., Ansari S.B., Malik S. and Khan S. (2019). Sodium azide affects the qualitative and quantitative traits of *Linum usitatissimum* L (var. Padmini) in M₁ generation. *Int. Res. J. Pharma.*, **10**, 45-48.
- Kulkarni, G.B. (2011). Effect of mutagen on pollen fertility and other parameters in horsegram (*Macrotyloma uniflorum* L. Verdc). *Bio. Sci. Discov.*, **2(1)**, 146-150.
- Kumar, A. and Paul S. (2021). Effectiveness and efficiency of gamma rays and ethyl methane sulphonate (EMS) in linseed (*Linum usitatissimum* L.). *Himachal J. Agricult. Res.*, **47(2)**, 163-168.
- Kumar, R., Sharma N.K., Poonia K.M., Prakash V., Sharma A.K. and Meena S. (2023). Effect of seed treatment of Gamma radiation and EMS on germination and pollen fertility in Mungbean *Vigna radiata* L. Wilczek. *Environ. Ecol.*, 41(2A), 1072-1076.
- Kumari, V., Chaudhary H.K., Prasad R., Kumar A., Singh A., Jambhulkar S. and Sanju S. (2016). Frequency and spectrum of mutations induced by gamma radiations and ethyl methane sulphonate in Sesame (*Sesamum indicum* L.). *Scientia*, **14**, 270-278.
- Malik, S., Jahan R., Ansari S.B., Amin R. and Khan S. (2021). Physio-biochemical parameters of Ajwain (*Trachyspermum ammi* L.) induced by Gamma Rays and EMS. *Agricult. Sci. Digest*, **42(3)**, 260-265.
- Malinoveskii, B.N., Zoz N.M. and Kitaev A.I. (1973). Induction of cytoplasmic male sterility in sorghum by chemical mutagens. *Genetica*, **9**, 19-27.
- Meng, C., Ullah I., Wu W., Zhang Y., Shi R., Luo S., Luo C., Nanda S., Seleiman M.F., Jiang Y. and Huang W. (2024).
 EMS -Meditated Mutagenesis in Marigold Seeds and its effects on Seedling Growth and Physiology. *Phyton -Int. J. Exp. Bot.*, 93(11), 3030.
- Miransari, M. and Smith D.L. (2014). Plant Hormones and Seed Germination. 2014. *Environ. Exp. Bot.*, **99**, 110–121.
- Modi, R., Shaktawat P. and Sharma H. (2024). Investigating the imapact of Ethyl Methane Sulphonate (EMS) on Seed Sprouting and Plant Viability in *Brassica campestris*. *Int. J. Creative Res. Thoughts*, **12(2)**, 2320-2882.
- Monica, S. and Seetharaman N. (2015). Physical and chemical mutagenic effect on pollen fertility in M1 generation of Garden Bean (*Lablab purpureus* L.) Sweet var. *typicus* cv. CO (Gb) 14). *Europ. J. Exp. Biol.*, **5(9)**, 6-9.
- Nonogaki, H., Bassel G.W. and Bewley J.D. (2010). Germination-Still a Mystery. *Plant Sci.*, **179**, 574–581.

- Omosun, G, Akanwa F.E. and Lazarus B. (2021). Effect of ethyl methane sulphonate (EMS on the germination, growth and yield of two okra (*Abelmoschus esculentus* L. Moench) varirties. *African Scientist*, **22**(2), 1595-6881.
- Rani, N. and Kumar K. (2016). Mutagenic effects of EMS on pollen mother cells of *Catharanthus roseus* L. G.Don. *Chromosome Botany*, **11(3)**, 51-55.
- Selvaraj, R., Dhakshanamoorthy D. and Chidambaram A. (2010). Physical and chemical mutagenesis in *Jatropha curcas* L. to induce variability in seed germination, growth and yield traits. *Rom. J. Biol.-Plant Biol.*, **55(2)**, 113-125.
- Sharma, L.K., Kaushal M., Gill M.L.S. and Bali S.K. (2013). Germination and survival of Citrus Jambhiri Seeds and Epicotyls after Treating with different Mutagens under *in vitro* Conditions. *Middle- East J. Scientific Res.*, **16** (2), 250-255.
- Shukla, G.K. (2017). Gamma rays and EMS induced chromosomal abnormalities and pollen fertility in *Brassica campestris* L. genotypes. *Int. J. Res. Cult. Soc.*, **1(7)**, 2456-6683.
- Singh, S.B. and Marker S. (2006). Linseed: A plant with many uses. *Agrobios Newsletter*, **5**, 1-3.
- Sinha, R. (2017). Mutagenic effects of ethyl methane sulphonate on the pollen grains of *Urginea indica* Kunth cytotype I. *Int. J. Trend Scientific Res. Develop.*, **2(1)**,

- 2456-6470.
- Sowmya, P., Sankari A., Hemavathy T.A., Devi H.U., Iyanar K., Pugalendhi L. and Djanaguiraman M. (2023). Effect of gamma irradiation and EMS on germination, seedling length and seedling vigour index in vegetable Mochai (*Lablab purpureus* var. *lignosus* L.). *The Pharma Innov. J.*, **12(9)**, 2316-2319.
- Szczerba, A., Płażek A., Pastuszak J., Kopeć P., Hornyák M and Dubert F. (2021). Effect of Low Temperature on Germination, Growth and Seed Yield of four Soybean (*Glycine max L.*) Cultivars Agronomy, 11, 800.
- Thakur, P. and Paul S. (2020). Mutagenic effectivenes and efficiency of ethyl methane sulphonate (EMS) in linseed (*Linum usitatissimum L.*). J. Oilseeds Res., **37(4)**, 0970-2776
- Usharani, K.S. and Kumar A.C.R. (2015). Mutagenic efficiency and effectiveness of gamma rays and EMS and their combination in inducing chlorophyll mutations in M₁ generation of urdbean (*Vigna mungo* (L.) Hepper). *Elect. J. Plant Breed.*, **6(1)**, 210-217.
- Venkatachalam, S., Kumar M., Chidambaram P. and Badigannavar A.M. (2020). Effect of EMS on seed germination in white seeded varieties (*Sesamum induicum* L.). *J. Oilseeds Res.*, **37(special issue**).